

R R Institute of Technolog

 $\boldsymbol{\Diamond}$ Raja Reddy Layout, near chikkabanavara railway station, chikkabanavara,

An Autonomous Institution under VTU Approved by AICTE, New Delhi & Government of Karnataka

Course Title:	Introduction To Embedded Systems	Semester	I/II
Course Code:	BETCK105J /205J	CIE Marks	50
Course Type (Theory/Practical	SEE Marks	50	
/Integrated)	Total Marks	100	
Teaching Hours/Week (L:T:P:S)	3:0:0:0	Exam Hours	03
Total Hours of Pedagogy	40 hours	Credits	03
Course Learning objectives: T	o teach students		
CLO1. Introductory topics of En	nbedded System design		
CLO2. Characteristics & attribut	tes of Embedded System		
CLO3. Introduction of Embedde	ed System Software and Hardware develo	pment	
CLO4. Industry traits in Embedde	ed system design		
`Teaching-Learning Process			
These are sample Strategies, wh	ich teacher can use to accelerate the attain	nment of the var	ious
course outcomes and make Teac	ching –Learning more effective		
1. Lecturer method (L) doe	s not mean only the traditional lecture me	ethod, but a diffe	erent
type of teaching method	may be adopted to develop the outcomes	5.	
2. Show Video/animation f circuits.	ilms to explain the functioning of various	analog and digi	tal
3. Adopt Problem Based Le	earning (PBL), which fosters students' A	nalytical skills,	
-	uch as the ability to evaluate, generalize,	•	
information rather than s		2	
	to solve the same problem and encourag	e the students to)
	creative ways to solve them.		
-	ept can be applied to the real world - and	when that's poss	sible, it
	computer Architecture & Introduction	to Embedded S	System
Self-study: : Number conversi	on and ASCII equivalent , Generic str	ucture of Com	outer
Basics of computer architectu	are and the binary number system: Ba	sics of compute	er
architecture, computer language	es, RISC and CISC architectures, numbe	r systems, numb	ber
format conversions, computer a	rithmetic, units of memory capacity		
Introduction to embedded s	ystems: Application domain of embed	lded systems, d	lesirable
features and general character	ristics of embedded systems, model of	an embedded	system,
_	oller, example of a simple embedded sys		-
-	ation of MCUs: 4/8/16/32 bits, history	-	
current trends	•		- /
	ld of embedded, current trends in industr	y of embedded s	ystem

Module-2 The Typical Embedded System (8 Hours)

Self Study: Basic building blocks of Embedded System, Different PLDs, Interface design Core of Embedded Systems : General Purpose and Domain Specific Processors, Application specific ICs, sensors and actuators, embedded firmware, other system components, PCB and

passive components

Characteristics and quality attributes of embedded systems: Characteristics, Operational and nonoperational quality attributes, application specific embedded system - washing machine, domain specific – automotive

Applications: Electronics Control Unit employed in automotive application **(RBT Level:** L1,L2

Module-3(Embedded Software & Hardware Design) (8Hours)

Self Study: Basic understanding of Analog and Digital Electronics Components characteristics

Hardware Software Co design and Program Modelling : Fundamental issues in Hardware Software Co-design, Computational models in Embedded System Design

Embedded Hardware Design and Development: Analog Electronic Components, Digital Electronic Components, Electronic Design Automation Tools

Application: Application of combinational and sequential circuit in product design

(**RBT Level:** L1,L2,L3)

Module-4 (Embedded System Design and Development Environment)(8 Hours)

Self Study: Basic understanding programming language

Embedded Firmware Design and Development: Embedded Firmware Design

Approaches, Embedded Firmware Development Languages

Embedded System Development Environments: Types of files generated on cross compilation (only explanation – programming codes need not be dealt), disassemble/ decompiler,

Simulators, Emulators and Debugging

Application: Importance of Emulator and simulator in design Development (**RBT Level: L1,L2,L3**

Module-5 Trends in Embedded Industry(8 Hours)

Self Study: Current technology focus in Embedded

Processor Trends in Embedded System, Embedded OS Trends, Development Language Trends, Open standards frameworks and alliances, Bottlenecks

Application: Skill set to work with embedded system

RBT Level : L1,L2

Course outcomes (Course Skill Set)

At the end of the course the student will be able to:

- 1. Understand the industry trends in embedded system
- 2. Explain characteristics of Embedded System design
- 3. Acquire knowledge about basic concepts of circuit emulators, debugging and RTOS
- 4. Analyse embedded system software and hardware requirements
- 5. Develop programming skills in embedded systems for various applications.

Course Assessment and Evaluation Details (both CIE and SEE) Continuous Internal Evaluation: 50 marks

Theory Assessment Tool	Marks	Reduced marks
IAT-1	25	25
IAT-2	25	
Assessment -1(activity based)	25	25
Assessment-2(activity based)	25	
Semester End Examination (SE	E) : 50 marks	·
SEE	Marks	Reduced Marks
Course end examination	100	50
(Answer any one question from		
each unit – Internal choice)		

- To design a simple Embedded System like simple remote
- To demonstrate simple microcontroller based experiments like LED interfacing, LCD interfacing, DAC etc

Suggested Learning Resources:

Text Books :

1. Lyla B Das, Embedded systems: An Integrated Approach, 1st Ed., Pearson, 2013

2. Shibu K V, "Introduction to Embedded Systems", Second Edition, McGraw Hill Education **Reference Books:**

1. Kanta Rao B, Embedded Systems, 1st Ed., PHI

2. Frank Vahid & Tony Givargis, Embedded System Design, 2nd Edition, John Wiley,

Web links and Video Lectures (e-Resources):

NPTL Lectures: <u>https://nptel.ac.in/courses/108102045</u> Embedded Systems, IIT Delhi, Prof. Santanu Chaudhary

COs and POs Mapping

COs	POs										PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2											3	
CO2	3	2	2	3									3	
CO3	3	2	2	3	3	2							3	
CO4	3	2	2		3	2							3	
CO5	3					2							3	
Level 3- Highly Mapped, Level 2-Moderately Mapped, Level 1-Low Mapped, Level 0- Not Mapped														